Roles of Omega-3 Fatty Acids in Eye Health and Disease: A Review
Published: 12-07-2024
Page: 621-640
Issue: 2024 - Volume 3 [Issue 3]
Michael N.I. Lokuruka *
Department of Food Science and Nutrition, Karatina University, Box 1957-10101, Karatina, Kenya.
*Author to whom correspondence should be addressed.
Abstract
Aims and Study Design: A literature review of the roles of omega-3 fatty acids (FA) and particularly EPA and DHA, in eye health, and, as disease-preventive and curative agents for various ocular ailments was undertaken.
Place and Duration of Study: It was done between December 2021 and May 2024.
at the Department of Food Science and Nutrition, Karatina University, Kenya.
Results: Omega-3 FA are needed for brain and vision development in infants and children, protecting the eye from degenerative damage and conferring anti-inflammatory benefits. They seem to prevent and slow macular degeneration, dry eye disease, and lower the risk of early age-related macular degeneration, glaucoma and retinopathy, thus lowering the risk of early vision loss. Fatty fish from the wild, krill, seaweed and sea algae are rich sources of the ω-3 FA, EPA and DHA, while walnuts, flaxseeds and flaxseed oil, chia seeds, canola and soybean oils, tofu and meat from grass-fed ruminants, are good sources of the nutrients, but as ALA. Commercially-prepared fried fish from restaurants and fast-food establishments, are relatively lower in the omega-3s, but high in trans-fatty acids due to high temperature thermal processing. Boiling in water, broiling or grilling for short periods are recommended for preparing fish for consumption and omega-3 FA retention. Dietary omega-3 FA are more efficacious than omega-3 FA from supplements, probably due to their synergistic interaction with lutein, beta-carotene, Vitamins A, C and E and Zinc.
Conclusion: It seems prudent to incorporate Vitamin A, C, E and Zinc during omega-3 FA supplement manufacture to boost their efficacy. Although health authorities recommend 1-2 meals of fatty fish edible portion/week and a daily intake of 0.5-1 g/day or more of the ω-3 FA for cardiovascular health, no definitive amounts are recommended for eye health and curing the various ocular diseases at this point in time. It is, however, increasingly being recommended that amounts of more than 1 g/day and up to 2 g/day are safe and more beneficial based on age, gender and health condition. The omega-3 index is a useful tool for maintaining the blood status of the omega-3 FA. Although ω-3 FA play important roles in eye health and the prevention of ocular dystrophies, the cardioprotective role of omega-6 FA, especially LA, against coronary heart disease cannot be discounted, such that drastic dietary or reduction of ω-6 FA when taken as supplements may be ill-advised at present, while balancing their ratio with that of the omega-3 FA seems to be appropriate health-wise.
Keywords: Omega-3 fatty acids, eye health, eye disease
How to Cite
Downloads
References
Nigam D, Yadav R, Tiwari U. Omega-3 fatty acids and its role in human health. First Online: 13 October 2018. Chapter 9 in: Rani V and Yadav U.C.S. (editors) in Functional foods and human health, Springer Nature, Singapore PTE Ltd. 2018;173-198.
Das UN. Essential fatty acids: Biochemistry, physiology and pathology. Biotech J. 2006;1(4):420–439.
Hughes CL, Dhiman TR. Dietary compounds in relation to dietary diversity and human health. J. Medic. Food. 2002;5(2):51–68.
Benatti P, Peluso G, Nicolai R, Calvani M. Polyunsaturated fatty acids: Biochemical, nutritional and epigenetic properties. J. Amer. Coll. Nutr. 2004;23(4):281–302.
Borowitzka MA. High-value products from microalgae—their development and commercialisation. J Appl Phycol. 2013; 25:743–756. Available:https://doi.org/10.1007/s10811-013-9983-9
Wang H, Daggy BP. The role of fish oil in inflammatory eye diseases. Bio Med. Hub J. 2017;2(1):1-12. Available:https:/doi:10.1159/000455818 46
Bzikowska-Jura A, Czerwonogrodzka-Senczyna A, Jasińska-Melon E, Mojska H, Olędzka G, Wesołowska A, Szostak-Węgierek D. The concentration of omega-3 fatty acids in human milk is related to their habitual but not current intake. Nutrients. 2019;11(7):1585. DOI: 10.3390/nu11071585
Walchuk C, Suh M. Nutrition and the aging retina: A comprehensive review of the relationship between nutrients and their role in age-related macular degeneration and retina disease prevention. Adv. Food Nutr. Res. 2020;93:293-332. DOI: 10.1016/bs.afnr.2020.04.003 47
Hou TY, McMurray DN, Chapkin RS. Omega-3 fatty acids, lipid rafts, and T cell signaling. Eur J Pharmacol. 2016;785: 2-9. DOI: 10.1016/j.ejphar.2015.03.091
Eilander A, Hundscheid DC, Osendarp SJ, Transler C, Zock PL. Effects of n-3 long chain polyunsaturated fatty acid supplementation on visual and cognitive development throughout childhood: A review of human studies. Prost. Leukotr. Essent. Fatty Acids. 2007;76: 189-203.
Wani AL, Bhat SA, Ara A. Omega-3 fatty acids and the treatment of depression: a review of scientific evidence. Integr. Med. Res. 2015;4(3):132-141. DOI: 10.1016/j.imr.2015.07.003
Byelashov OA, Sinclair AJ, Kaur G. Dietary sources, current intakes and nutritional role of omega-3 decosapentaenoic acid. Lipid Technol. 2015;27(4):79-82. DOI: 10.1002/lite.201500013 49
Stillwell SR. Wassall. Docosahexaenoic acid: Membrane properties of a unique fatty acid. Chem. Phys. Lipids. 2003;126:1-27.
Daley CA, Abbott A, Doyle PS, Nader GA, Larson S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 2010; 9:10. DOI: 10.1186/1475-2891-9-10
Frigerio F, Pasqualini G, Craparotta I, Marchini S, Van Vliet EA, Foerch P, et al. n-3 decosapentaenoic acid-derived protectin D1 promotes resolution of neuroinflammation and arrests epileptogenesis. Brain. 2018;141(11): 3130-3143. Available:https://doi.org/10.1093/brain/awy 247 50
Kaur G, Garg M, Sinclair AJ. Decosapentaenoic acid (22:5n-3): A review of its biological effects. Prog. Lipid Res. 2011;50(1):28-34. Accessed 10th June, 2021. Available:https://doi.org/10.1016/j.plipres.2 010.07.004
Bäck M, Hansson GK. Omega-3 fatty acids, cardiovascular risk and the resolution of inflammation. FASEB Journal. 2019;33(2):1536-1539. DOI: 10.1096/fj.201802445R
DiNicolantonio JJ, O’Keefe JH. Effects of dietary fats on blood lipids: A review of direct comparison trials. Open Heart. 2018;5:e000871. DOI: 10.1136/openhrt-2018-000871 5
Calder PC. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Amer. J. Clin. Nutr. 2006;83(6):1505S-1519. DOI: 10.1093/ajcn/83.6.1505S70
Rahul Mallick, Sanjay Basak, Asim K. Duttaroy. Docosahexaenoic acid, 22:6n-3: Its roles in the structure and function of the brain. Int. J. Developmental Neuro Science. First published: 17 October 2019; Available:https://doi.org/10.1016/j.ijdevneu.2019.10.004
Kris-Etherton PM, Innis S. Position of the American dietetic association and dietitians of Canada canada: Dietary fatty acids. J Am Diet Assoc. 2007;107:1599-1611.
Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 2008;233(6):674-88. DOI: 10.3181/0711-MR-311
American Heart Association Nutrition Committee, Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee, Circulation. 2006;114:82-96.
US Department of Health and Human Services, US Department of Agriculture, Dietary Guidelines for Americans, US Department of Health and Human Services website; 2005. Available:http://www.health.gov/dietaryguidelines/dga2005/document/default.html.
DiNicolantonio JJ, OKeefe J. Importance of maintaining a low omega-6/omega-3 ratio for reducing platelet aggregation, coagulation and thrombosis. Open Heart 2019;6(1):e001011. DOI: 10.1136/openhrt-2019-001011
American Heart Association Nutrition Subcommittee; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. American Heart Association Science Advisory Omega-6 fatty acids and risk of cardiovascular disease. Circulation. 2009;119:0-0.
Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. 2011;93(5):950-62. DOI: 10.3945/ajcn.110.006643
De Felice C, Signorini C, Durand T, Ciccoli L, Leoncini S, D'Esposito M, Filosa S, Oger C, Guy A, Bultel-Poncé V, Galano JM, Pecorelli A, De Felice L, Valacchi G, Hayek J. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. 2012;7(3):447-58. DOI: 10.1007/s12263-012-0285-7
Brasky TM, Till C, White E, Neuhouser ML, Song X, Goodman P, Thompson IM, King IB, Albanes D, Kristal AR. Serum phospholipid fatty acids and prostate cancer risk: Results from the prostate cancer prevention trial. Am J Epidemiol. 2011;173(12):1429-39. DOI: 10.1093/aje/kwr027
Reisman J, Schachter HM, Dales RE, Tran K, Kourad K, Barnes D, Sampson M, Morrison A, Gaboury I, Blackman J. Treating asthma with omega-3 fatty acids: Where is the evidence? A systematic review. BMC Complement Altern Med. 2006;6:26. DOI: 10.1186/1472-6882-6-26.
Kostoglou-Athanassiou I, Athanassiou L, Athanassiou P. The effect of omega-3 fatty acids on rheumatoid arthritis. Mediterr J Rheumatol. 2020;31(2):190-194. DOI: 10.31138/mjr.31.2.190.
Wani AL, Bhat SA, Ara A. Omega-3 fatty acids and the treatment of depression: A review of scientific evidence. Integr Med Res. 2015;4(3):132-141. DOI: 10.1016/j.imr.2015.07.003
Cawood A, Ding R, Napper FL, Young RH, Williams JA, Ward M.J, Gudmundsen O., Vige R., Payne SP, Ye S, et al. Eicosapentaenoic acid (EPA) from highly concentrated n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis. 2010;212:252–259. DOI: 10.1016/j.atherosclerosis.2010.05.022
Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, Davidson MH, Kastelein JJ, Koenig W, McGuire DK. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: The STRENGTH randomized clinical trial. JAMA. 2020;324:2268–2280. DOI: 10.1001/jama.2020.22258
Lauritzen L, Brambilla P, Mazzocchi A, Harsløf LB, Ciappolino V, Agostoni C. DHA effects in brain development and function. Nutrients. 2016;8:6. DOI: 10.3390/nu8010006
Russo GL. Dietary n-6 and n-3 polyunsaturated fatty acids: From biochemistry to clinical implications in cardiovascular prevention. Biochem Pharmacol. 2009;77:937–46.
Siriwardhana N, Kalupahana NS, Fletcher S, Xin W, Claycombe KJ, Quignard-Boulange A, Zhao L, Saxton AM, Moustaid-Moussa N. n-3 and n-6 polyunsaturated fatty acids differentially regulate adipose angiotensinogen and other inflammatory adipokines in part via NF-κB-dependent mechanisms. J Nutr Biochem. 2012;23(12):1661-7. DOI: 10.1016/j.jnutbio.2011.11.009
Ramsden CE, Zamora D, Leelarthaepin B, Majchrzak-Hong SF, Faurot KR, Suchindran CM, Ringel A, Davis JM, Hibbeln JR. Use of dietary linoleic acid for secondary prevention of coronary heart disease and death: Evaluation of recovered data from the Sydney Diet Heart Study and updated meta-analysis. BMJ 2013;346:e8707. DOI: 10.1136/bmj.e8707. Erratum in: BMJ. 2013;346:f903.
Chowdhury R, Warnakula S, Kunutsor S, Crowe F, Ward HA, Johnson L, Franco OH, Butterworth AS, Forouhi NG, Thompson SG, Khaw KT, Mozaffarian D, Danesh J, Di Angelantonio E. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann Intern Med. 2014;160(6):398-406. DOI: 10.7326/M13-1788. Erratum in: Ann Intern Med. 2014;160(9):658.
Tur JA, Bibiloni MM, Sureda A, Pons A. Dietary sources of omega 3 fatty acids: Public health risks and benefits. Br. J. Nutr. 2012;107 Suppl 2:S23-52. DOI: 10.1017/S0007114512001456
Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder PC. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res. 2016;64:30-56. DOI: 10.1016/j.plipres.2016.07.002
Meng L. How fish is cooked affects heart-health benefits of omega-3 fatty acids. American Heart Association (AHA), Scientific Conference, Hawaii, Manoa; 2009.
Fliesler SJ. Lipids and lipid metabolism in the eye. J. Lipid Res. Published online, Jan. 2010. 2010;51(1):1-3. Available:https://doi.org/10.1194/jlr.E003533
Rujoi M, Jin J, Borchman D, Tang D, Yappert MC. Isolation and lipid characterization of cholesterol-enriched fractions in cortical and nuclear human lens fibers. Invest. Ophthalmol. Vis. Sci. 2003;44:1634–1642.
Jacob RF. Cenedella RJ, Mason RP. Direct evidence for immiscible cholesterol domains in human ocular lens fiber cell plasma membranes. J. Biol. Chem. 1999;274:31613–31618.
Estrada R, Puppato A, Borchman D, Yappert MC. Re-evaluation of the phospholipid composition in membranes of adult human lenses by 31-P NMR and MALDI-MS. Biochim. Biophys. Acta-Biomembranes. 2009;1798:301–311.
McOmtyre TM, Snyder F, Marathe GK, Dennis EV, Jean EV. Biochemistry of Lipids, Lipoproteins and Membranes. 5th edition Elsevier, San Diego; 2018.
Gorgas K, Teigler A, Komljenovic D, Just WW. The ether lipid-deficient mouse: Tracking down plasmalogen functions. Biochim. Biophys. Acta. 2006;1763:1511–1526.
Nagan N, Zoeller RA. Plasmalogens: Biosynthesis and functions. Prog. Lipid Res. 2001;40:199–229.
Borchman D, Yappert MC, Afzal M. Lens lipids and maximum lifespan. Exp. Eye Res. 2004;79:761–768.
Huang L, Rasi V, Grami V. Marrero Y, Borchman D, Tang D, Yappert MC. Human lens phospholipid changes with age and cataract. Invest. Ophthalmol. Vis. Sci. 2005;46:1682–1689.
Deeley JM, Mitchell TW, Wei X, Korth J, Nealon JR, Blanksby SJ, Truscott RJ. Human lens lipids differ markedly from those of commonly used experimental animals. Biochim. Biophys. Acta. 2008;1781:288–298.
Rodemer C, Thai TP, Brugger B, Gorgas K, Just WW. Targeted disruption of ether lipid synthesis in mice. Adv. Exp. Med. Biol. 2003a;544:355–368.
Rodemer C, Thai TP, Brugger B, Kaercher H, Werner KA, Nave F, Wie l, Gorgas K, Just WW. Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet. 2003b;12:1881–1895.
Yappert MC, Rujoi M, Borchman D, Vorobyov I, Estrada R. Glycero- versus sphingo-phospholipids: Correlations with human and non-human mammalian lens growth. Exp Eye Res. 2003;76(6):725-34. DOI: 10.1016/s0014-4835(03)00051-4
Huber T, Rajamoorthi K, Kurze VF, Beyer K, Brown MF. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by (2) H NMR and molecular dynamics simulations. J Am Chem Soc. 2002;124(2):298-309. Available:https://www.ncbi.nlm.nih.gov/pubmed/11782182
Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int. 2015;112 (5):71-81;quiz 82. DOI: 10.3238/arztebl.2015.0071
Zoukhri D. Effect of inflammation on lacrimal gland function. Exp Eye Res. 2006;82(5):885-98. DOI: 10.1016/j.exer.2005.10.018
Inoue S, Kawashima M, Arita R, Kozaki A, Tsubota K. Investigation of meibomian gland function and dry eye disease in patients with graves' ophthalmopathy. J Clin Med. 2020;9(9):2814. DOI: 10.3390/jcm9092814
Şimşek C, Doğru M, Kojima T, Tsubota K. Current management and treatment of dry eye disease. Turk J Ophthalmol. 2018 Dec 27;48(6):309-313. DOI: 10.4274/tjo.69320
Stahl A. The diagnosis and treatment of age-related macular degeneration. Dtsch Arztebl Int. 2020;117(29-30):513-520. DOI: 10.3238/arztebl.2020.0513
Takahashi K, Iida T, Ishida S, Crawford B, Sakai Y, Mochizuki A, Tsujiuchi R, Tanaka S, Imai K. Effectiveness of current treatments for wet age-related macular degeneration in Japan: A systematic review and pooled data analysis. Clin Ophthalmol. 2022;16:531-540. DOI: 10.2147/OPTH.S345403
Lin JB, Halawa OA, Husain D, et al. Dyslipidemia in age-related macular degeneration. Eye. 2022;36:312–318. Available:https://doi.org/10.1038/s41433-021-01780-y
Mohamed-Noriega J, Sekhar GC. Defining and diagnosing glaucoma: A focus on blindness prevention. Community Eye Health 2021;34(112):32-35.
Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The Diagnosis and Treatment of Glaucoma. Dtsch Arztebl Int. 2020;117(13):225-234. DOI: 10.3238/arztebl.2020.0225
National Eye Institute. Types of glaucoma; 2021. Available:https://www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/glaucoma/types-glaucoma.updated September 10th, 2021.
Shen R, Li VSW, Wong MOM, Chan PPM. Pediatric glaucoma-from screening, early
detection to management. Children (Basel). 2023;10(2):181. DOI: 10.3390/children10020181
Das T, Takkar B, Sivaprasad S, Thanksphon T, Taylor H, Wiedemann P, Nemeth J, Nayar PD, Rani PK, Rajiv K. Recently updated global diabetic retinopathy screening guidelines: commonalities, differences, and future possibilities. Eye. 2021;35:2685–2698.
Anon. Definition of Retinopathy. Available:www.merriam-webster.com. Retrieved 2023-03-01.
Chen K, Li Y, Zhang X, et al. The role of the PI3K/AKT signaling pathway in the corneal epithelium: Recent updates. Cell Death Dis. 2022;13:513. Available:https://doi.org/10.1038/s41419-022-04963-x
Ophthalmology, American Academy of. Retina and vitreous. American Academy of Ophthalmology (2011–2012 ed.). 2012;271. ISBN 9781615251193.
Cheung, Ning; Mitchell, Paul; Wong, Tien Yin. Diabetic retinopathy. The Lancet. 2010;376(9735):124–136. DOI: 10.1016/S0140-6736(09)62124-3
World Health Organization. Blindness and vision impairment: The key facts; 2019. Available:https://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment
Saunders EF, Reider A, Singh G, Gelenberg AJ, Rapoport SI. Low unesterified: Esterified eicosapentaenoic acid (EPA) plasma concentration ratio is associated with bipolar disorder episodes, and omega-3 plasma concentrations are altered by treatment. Bipolar Disord. 2015;17(7):729-42. DOI: 10.1111/bdi.12337
Daniëlle Swinkels, Myriam Baes. The essential role of docosahexaenoic acid and its derivatives for retinal integrity. Pharmacology and Therapeutics. 2023;247. Available:https://www.sciencedirect.com/science/article/abs/pii/S0163725823001043
Weir N, Guan W, Karger AB, Klein BEK, Meuer SM, Cotch MF, Guo X, Li X, Tan J, Genter P, Chen YI, Rotter JI, Ipp E, Tsai MY. Omega-3 fatty acids are associated with decreased presence and severity of diabetic retinopathy: A combined analysis of MESA and GOLDR Cohorts. Retina. 2023;43(6):984-991. DOI: 10.1097/IAE.0000000000003745
García P, Hernández Martínez FJ, Aznárez López N, Castillón Torre L, Tena Sempere ME. Supplementation with a Highly Concentrated Docosahexaenoic Acid (DHA) in Non-Proliferative Diabetic Retinopathy: A 2-Year Randomized Double-Blind Placebo-Controlled Study. Antioxidants (Basel). 2022; 11(1):116. DOI: 10.3390/antiox11010116
Sugasini D, Yalagala PCR, Subbaiah PV. Efficient enrichment of retinal DHA with Dietary Lysophosphatidylcholine-DHA: Potential Application for Retinopathies. Nutrients. 2020;12(10):3114. DOI: 10.3390/nu12103114. Erratum in: Nutrients. 2021;13(7). Available:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7601701/
Niu SL, Mitchell DC, Lim SY, Wen ZM, Kim HY, Salem N Jr, Litman BJ. Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J Biol Chem 2004;279:31098-104.
Available:https://www.ncbi.nlm.nih.gov/pubmed/15145938
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients. 2010;2(3):355-374. DOI: 10.3390/nu2030355
Querques G, Forte R, Souied EH. Retina and omega-3. J Nutr Metab. 2011;2011:748361. DOI: 10.1155/2011/748361
Ausgood C, Chakravarthy U, Young I, Vioque J, de Jong PT, Bentham G, Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Vingerling JR, Fletcher AE. Oily fish consumption, dietary docosahexaenoic acid and eicosapentaenoic acid intakes, and associations with neovascular age-related macular degeneration. Am J Clin Nutr. 2008;88(2):398-406. Available:https://www.ncbi.nlm.nih.gov/pubmed/18689376.
SanGiovanni JP, Agron E, Meleth AD, Reed GF, Sperduto RD, Clemons TE, et al. ω-3 Long-chain polyunsaturated fatty acid intake and 12-y incidence of neovascular age-related macular degeneration and central geographic atrophy: AREDS report 30, a prospective cohort study from the Age-Related Eye Disease Study. Am J. Clin. Nutr. 2009; 90:1601-7. Available:https://www.ncbi.nlm.nih.gov/pubmed/19812176
Georgakopoulos CD, Makri OE, Pagoulatos D, Vasilakis P, Peristeropoulou P, Kouli V, Eliopoulou MI, Psachoulia C. Effect of Omega-3 fatty acids dietary supplementation on ocular surface and tear film in diabetic patients with dry eye. J. Am. Coll. Nutr. 2017;36(1):38-43. DOI: 10.1080/07315724.2016.1170643
Downie LE, Vingrys AJ. Oral Omega-3 supplementation lowers intraocular pressure in normotensive adults. Transl Vis Sci Technol. 2018;7(3):1. Available:https://www.ncbi.nlm.nih.gov/pubmed/29736322. Accessed on 4th June, 2023.
Giannaccare G, Pellegrini M, Sebastiani S, Bernabei F, Roda M, Taroni L, Versura P, Campos EC. Efficacy of Omega-3 fatty acid supplementation for treatment of dry eye disease: A meta-analysis of randomized clinical trials. Corneal; 2019. Available:https://www.ncbi.nlm.nih.gov/pubmed/30702470
Mosca F, Giannì ML. Human milk: Composition and health benefits. Pediatr. Med. Chir. 2017;39:155. DOI: 10.4081/pmc.2017.155
Delgado-Noguera MF, Calvache JA, Bonfill Cosp X. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane Database Syst. Rev. 2010:Cd007901. DOI: 10.1002/14651858.CD007901.pub2.
Guillot M, Synnes A, Pronovost E, Qureshi M, Daboval T, Caouette G, Olivier F, Bartholomew J, Mohamed I, Massé E, Afifi J, Hendson L, Lemyre B, Luu TM, Strueby L, Cieslak Z, Yusuf K, Pelligra G, Ducruet T, Khairy AB, Ndiaye T, Angoa G, Sériès T, Piedboeuf B, Nuyt AM, Fraser W, Mâsse B, Lacaze-Masmonteil T, Lavoie PM, Marc I. Maternal High-Dose DHA Supplementation and neurodevelopment at 18–22 months of preterm children. Pediatrics. 2022; 150(1):e2021055819. Available:https://doi.org/10.1542/peds.2021-055819
Strømmen K, Blakstad EW, Moltu SJ, Almaas AN, Westerberg AC, Amlien IK, Iversen PO. Enhanced nutrient supply to very low birth weight infants is associated with improved white matter maturation and head growth. Neonatology. 2014;107(1):68-75.
O’Connor DL, Hall R, Adamkin D, Auestad N, Castillo M, Connor WE, Connor SL, Fitzgerald K, Groh-Wargo S, Hartmann EE, et al. Growth and development in preterm infants fed long-chain polyunsaturated fatty acids: A prospective, randomized controlled trial. Pediatrics. 2001;108:359–371.
James MJ, Gibson RA, Cleland IG. Dietary polyunsaturated fatty acids and inflammatory mediator production. Am J Clin Nutr. 2000;71(1 Suppl):343S–348S.
Mahmood AM, Al-Swailem SA. Essential fatty acids in the treatment of dry eye syndrome: A myth or reality? Saudi J Ophthalmology. 2014;28(3):195-7. DOI: 10.1016/j.sjopt.2014.06.004
Vitale S, Agrón E, Clemons TE, Keenan TDL, Domalpally A, Danis RP Jr, Chew EY. Association of 2-Year Progression Along the AREDS AMD Scale and Development of Late Age-Related Macular Degeneration or Loss of Visual Acuity: AREDS Report 41. JAMA Ophthalmol. 2020;138(6):610-617. DOI: 10.1001/jamaophthalmol.2020.0824.
Joon-Young Hyon, Sang-Reom Han. The protective role of polyunsaturated fatty acids against dry eye disease: A literature review.Appl. Sci. 2021;11(10):4519. Available:https//doi.org/10.3390/app11104519.
Bucolo C, Maugeri G, Giunta S, D'Agata V, Drago F, Romano GL. Corneal wound healing and nerve regeneration by novel ophthalmic formulations based on cross-linked sodium hyaluronate, taurine, vitamin B6, and vitamin B12. Front Pharmacol. 2023;14:1109291. DOI: 10.3389/fphar.2023
DiNicolantonio JJ, O'Keefe J. The importance of maintaining a low omega-6/omega-3 ratio for reducing the risk of inflammatory cytokine storms. Mo Med. 2020;117(6):539-542.
Ken D, Stark, Mary E, Van Elswyk M. Roberta Higgins, Charlie Weatherford, Norman Salem Jr. Global survey of the omega-3 fatty acids, docosahexaenoic acid and eicosapentaenoic acid in the blood stream of healthy adults. Prog. Lipid Res. 2016; 63:132-152.
San Giovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog Retin Eye Res. 2005;24(1):87-138. DOI: 10.1016/j.preteyeres.2004.06.002
Wang WX, Ko ML. Efficacy of omega-3 intake in managing dry eye disease: A systematic review and meta-analysis of randomized controlled trials. J. Clin. Med. 2023;12(22):7026. DOI: 10.3390/jcm12227026
Hussain M, Shtein RM, Pistilli M, Maguire MG, Oydanich M, Asbell PA. The Dry Eye Assessment and Management (DREAM) extension study – A randomized clinical trial of withdrawal of supplementation with omega-3 fatty acid in patients with dry eye disease. The Ocular Surface. 2020; 18(1):47-55.
Christen WG, Cook NR, Manson JE, et al. Efficacy of Marine ω-3 fatty acid supplementation vs placebo in reducing incidence of dry eye disease in healthy u adults: A randomized clinical trial. JAMA Ophthalmol. 2022;140(7):707–714. DOI: 10.1001/jamaophthalmol.2022.1818
García-Layana A, Cabrera-López F, García-Arumí J, Arias-Barquet L, Ruiz-Moreno JM. Early and intermediate age-related macular degeneration: update and clinical review. Clin Interv Aging. 2017;12:1579-1587. DOI: 10.2147/CIA.S142685
Lawrenson JG, Evans JR. Omega-3 fatty acids for preventing or slowing the progression of age-related macular degeneration. Cochrane Database Syst Rev. 2015;2015(4):CD010015. DOI: 10.1002/14651858.CD010015.pub3
Agrön E, Mares J, Clemons T, Swaroop A, Chew EY, Tiarnan DL. Keenan, for the ARDS and AREDFS2 research group. Dietary nutrient intake and progression of to late-age-related macular degeneration in the age-related eye disease 1 and 2 study for AREDS 1 and AREDS 2 research group. Ophthalmology. 2020;128(3):425-442.
Olivier MC, Vanessa L, Isabelle A. Why and how meet n-3 PUFA dietary recommendations? Gastroenterology Research and Practice. 2011;2011:11 -15.
Djuricic I, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An Update for 2021. Nutrients. 2021;13(7):2421. DOI: 10.3390/nu13072421
Gammone MA, Parrinello RGG, D'Orazio N. Omega-3 Polyunsaturated fatty acids: Benefits and endpoints in sport. Nutrients. 2018;11(1):46. DOI: 10.3390/nu11010046
Institute of Medicine (National Academy of Medicine). Food and Nutrition Board. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Washington, DC: National Academy Press; 2005. Available:https://ods.od.nih.gov/factsheets/Omega3FattyAcids-HealthProfessional/.
Siscovick DS, Barringer TA, Fretts AM, Wu JH, Lichtenstein AH, Costello RB, Kris-Etherton PM, Jacobson TA, Engler MB, Alger HM, Appel L, Mozaffarian D. American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3 Polyunsaturated Fatty Acid (Fish Oil) Supplementation and the Prevention of Clinical Cardiovascular Disease: A Science Advisory from the American Heart Association. Circulation. 2017;135(15):e867-e884. DOI: 10.1161/CIR.0000000000000482
Skulas-Ray AC, Peter W, Wilson F, Harris WS, Brinton EA, Kris-Etherton PM, Richter CK, Jacobson TA, Engler MB, Miller M, Robinson JG, Blum CB, Leyva DB, De Ferranti SD, Welty FK. On behalf of the American Heart Association Council on Arteriosclerosis, Thrombosis and Vascular Biology; Council on Lifestyle and Cardiometabolic Health; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory From the American Heart Association. Circulation. 2019;140:e673–e691. Available:https://doi.org/10.1161/CIR.0000000000000709Circulation
Xin Zhang, Jennifer A. Ritonja, Na Zhou, Bingshu E, Chen, Xinzhi Li. Omega‐3 polyunsaturated fatty acids intake and blood pressure: A dose‐response meta‐analysis of randomized controlled trials. JAHA. 2022;11:e025071. Available:https://doi.org/10.1161/JAHA.121.025071
Mori TA. Marine OMEGA-3 fatty acids in the prevention of cardiovascular disease. Fitoterapia. 2017;123:51–58. DOI: 10.1016/j.fitote.2017.09.015
Merle BMJ, Colijn JM, Gregoire AC, De Koning-Backus APM, Delyfer MN, Kiefte-de Jong JC, Meester-Smoor M, Feart C, Verzijden T, Samieri C, Mediterranean Diet and Incidence of Advanced Age-Related Macular Degeneration: The EYE-RISK Consortium. Ophthalmol. 2018;126:381–390. DOI: 10.1016/j.ophtha.2018.08.006
De Koning-Backus APM, Buitendijk GHS, Kiefte-de Jong JC, Colijn JM, Hofman A, Vingerling JR, Haverkort EB, Franco OH, Klaver CCW. intake of vegetables, fruit, and fish is beneficial for age-related macular degeneration. Am. J. Ophthalmol. 2019;198:70–79. DOI: 10.1016/j.ajo.2018.09.036
Dempsey M, Rockwell MS, Wentz LM. The influence of dietary and supplemental omega-3 fatty acids on the omega-3 index: A scoping review. Front Nutr. 2023;10:1072653. DOI: 10.3389/fnut.2023.1072653
116. Kontostathi M, Isou S, Mostratos D, Vasdekis V, Demertzis N, Kourounakis A, Vitsos A, Kyriazi M, Melissos D, Tsitouris C, Karalis E, Klamarias L, Dania F, Papaioannou GT,Roussis V, Polychronopoulos E, Anastassopoulou J, Theophanides T, Rallis MC, Black HS. Influence of Omega-3 Fatty Acid-Rich Fish Oils on Hyperlipidemia: Effect of Eel, Sardine, Trout, and Cod Oils on Hyperlipidemic Mice. J Med Food. 2021; 24(7):749-755. DOI: 10.1089/jmf.2020.0114
Yan J, Liu M, Yang D, et al. Efficacy and safety of omega-3 fatty acids in the prevention of cardiovascular disease: A systematic review and meta-analysis. Cardiovasc Drugs Ther; 2022. Available:https://doi.org/10.1007/s10557-022-07379-z.
Whelton SP, He J, Whelton PK, Muntner P. Meta-analysis of observational studies on fish intake and coronary heart disease. Am J Cardiol. 2004;93:1119–1123. Available:https://www.ncbi.nlm.nih.gov/pubmed/15110203
Lane KE, Wilson M, Hellon TG, Davies IG. Bioavailability and conversion of plant based sources of omega-3 fatty acids - a scoping review to update supplementation options for vegetarians and vegans. Crit Rev Food Sci Nutr. 2022;62(18):4982-4997. DOI: 10.1080/10408398.2021.1880364
Wander RC, Hall JA, Gradin JL, Shi-Hua Du, Jewell DE. The ratio of dietary (n-6) t (n-3) fatty acids influences immune system function, eicosanoid metabolism lipid peroxidation and vitamin e status in aged dogs. J. Nutr. 1997;127(6):1198-1205.
Wensing AG, Mensink RP, Hornstra G. Effects of dietary n-3 polyunsaturated fatty acids from plant and marine origin on platelet aggregation in healthy elderly subjects. Br. J. Nutr. 1999;82:183–191.
Jane Pei-Chen Chang, Ping-Tsao Tseng, Bing-Syuan Zeng, Cheng-Ho Chang, Huanxing Su, Po-Han Chou, Kuan-Pin Su. Safety of supplementation of omega-3 polyunsaturated fatty acids: A systematic review and meta-analysis of randomized controlled trials. Advances in Nutrition 2023;14(6):P1326-P1336. Available:https://doi.org/10.1016/j.advnutr.2023.08.003
Dighriri IM, Alsubaie AM, Hakami FM, Hamithi DM, Alshekh MM, Khobrani FA, Dalak FE, Hakami AA, Alsueaadi EH, Alsaawi LS, Alshammari SF, Alqahtani AS, Alawi IA, Aljuaid AA, Tawhari MQ. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022;14(10):e30091. DOI: 10.7759/cureus.30091
Bhatt DL, P. Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Jr. For the REDUCE-IT Investigators. cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. New Eng. J. Med. 2019;380(1):11 -22. DOI: 10.1056/NEJMoa1812792
Calabresi DD, Pazzucconi F, Sirtori CR, Franceschini G. Omacor in familial combined
hyperlipidemia: Effects on lipids and low density lipoprotein subclasses. Atherosclerosis.
;148(2):387-96. DOI: 10.1016/s0021-9150(99)00267-1
Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, Murphy K, Aung T, Haynes R, Cox J, Murawska A, Young A, Lay M, Chen F, Sammons E, Waters E, Adler A, Bodansky J, Farmer A, McPherson R, Neil A, Simpson D, Peto R, Baigent C, Collins R, Parish S, Armitage J. ASCEND study collaborative group; Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med. 2018;379 (16):1540-1550. DOI: 10.1056/NEJMoa1804989
White-Springer SH, Vineyard KR, Kivipelto J, Warren LK. Dietary omega-3 fatty acid supplementation does not impair vitamin E status or promote lipid peroxidation in growing horses. J Anim Sci. 2021;99 (7):skab177. DOI: 10.1093/jas/skab177
Harris WS, Silveira S, Dujovne CA. The combined effects of N-3 fatty acids and aspirin on hemostatic parameters in man. Thromb. Res. 1990;57:517–526. DOI: 10.1016/0049 3848(90)90069-O
Rosemary R. Climate change and Antarctic fisheries: Ecosystem management in CCAMLR. Ecology Law Quarterly 2018;45(1):53-81. DOI: org/10.15779/Z381834271
Ritchie H, Roser M. Fishing and overfishing. How are fish stocks changing across the world? How much is overfished?; 2021 Available:https://ourworldindata.org/fish-and-overfishing#long-term-trends-in-fish-catch.
Accessed on: 27th April, 2024.
Ulven SM, Kirkhus B, Lamglait A, Basu S, Elind E, Haider T, Berge K, Vik H, Pedersen JI. Metabolic effects of krill oil are essentially similar to those of fish oil but at lower dose of EPA and DHA, in healthy volunteers. Lipids. 2011;46(1):37-46. DOI: 10.1007/s11745-010-3490-4
Schuchardt JP, Hahn A. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 2013;89:1–8. DOI: 10.1016/j.plefa.2013.03.010
Köhler A, Sarkkinen E, Tapola N, Niskanen T, Bruheim I. Bioavailability of fatty acids from krill oil, krill meal and fish oil in healthy subjects--a randomized, single-dose, cross-over trial. Lipids Health Dis. 2015;14:19. DOI: 10.1186/s12944-015-0015-4
Mozaffarian D, Maki KC, Bays HE, Aguilera F, Gould G, Hegele RA, Moriarty PM, Robinson JG, Shi P, Tur JF, Jean-François L, Aziz S, Lemieux P. For the TRILOGY (Study of CaPre in Lowering very High Triglycerides) investigators. Effectiveness of a Novel ω-3 Krill Oil Agent in Patients with Severe Hypertriglyceridemia: A Randomized Clinical Trial. JAMA Network Open. 2022; 5(1): e2141898. DOI:10.1001/jamanetworkopen.2021.41 898