Effects of Fermentation and Steaming on the Proximate and Antinutritional Properties of Pigeon Pea Seed Flour

I. G. Lawrence *

Department of Food Technology, Federal Polytechnic, Offa, Kwara State, Nigeria.

E. A. Akande

Department of Food Technology, Ladoke Akintola University of Technology, Ogbomosho Oyo State, Nigeria.

M. O. Oke

Department of Food Technology, Ladoke Akintola University of Technology, Ogbomosho Oyo State, Nigeria.

*Author to whom correspondence should be addressed.


Abstract

Pigeon pea is one of the underutilized legumes despite its high nutritional quality. The effect of fermentation and steaming on the quality attributes of commonly consumed legumes have been established but not fully on pigeon pea. This study therefore investigated the effects of fermentation and steaming on the quality properties of pigeon pea flour with the aim of optimizing these processing conditions. Response Surface Methodology (RSM) based on 3-level full factorial of the Random sample design was selected to optimize the effects of fermentation and steaming on the quality parameters of pigeon pea flour resulting from the experimental runs. The quality parameters of the treated pigeon pea flour: proximate (protein, ash, moisture, crude fibre, fat, carbohydrate) and antinutritional factors (Tannin, phytate, trypsin inhibitor and saponin) were determined to see the effects of fermentation and steaming using standard laboratory procedures. Numerical optimization technique was used to obtain the optimum processing conditions for the treated sample. Data were analyzed by ANOVA analysis. The values for moisture content, protein content, fat content, fiber content, ash content, and Nitrogen Free Extract of fermented pigeon pea flour ranged between 10.07 – 14.11%, 23.53-26.51%, 0.86 – 2.89%, 0.97 – 1.34%, 3.35 – 4.43%, and 51.39 – 58.04%, respectively. The result of the anti-nutritional properties of the samples showed fermented pigeon pea with the range of 51.95 – 93.96 mg/100g, 4.62 – 6.13 mg/100g, 86.72 – 275.21mg/100g and 2.18 - 4.32 % respectively. Result obtained from the steamed pigeon pea showed the lowest tannin (31.93 mg/100g) and phytate (4.59 mg/100g) contents were observed in samples steamed at 97.5oC for 30 and 20 minutes, respectively. The lowest tannin (65.89 mg/100g) and highest phytate (6.12 mg/100g) contents also were observed in samples roasted at 140oC for 10 minutes, respectively. The anti-nutritional levels of the pigeon pea flour were reduced as shown from the results, which indicated that pigeon pea flour could be utilized effectively for the production of complementary, confectionary foods or supplemented in legume-cereal based diets.

Keywords: Pre-treatment, fermentation, steaming, pigeon pea, nutritional properties, antinutritional properties


How to Cite

Lawrence , I. G., Akande , E. A., & Oke , M. O. (2023). Effects of Fermentation and Steaming on the Proximate and Antinutritional Properties of Pigeon Pea Seed Flour. Asian Journal of Food Research and Nutrition, 2(4), 298–312. Retrieved from https://journalajfrn.com/index.php/AJFRN/article/view/53

Downloads

Download data is not yet available.

References

Rachie KO, Wurster R. The potential of pigeon pea (Cajanus cajan) as a horticultural crop in East Africa. 1 SHS Acts hortictive. 2007;21:1-5.

Pal D, Mishra P, Sachan N, Ghosh AK. Biological activities and medicinal properties of Cajanus Cajan (L.) Millsp. J Adv Pharm Technol Res. 2011;2(4):207-14.

Akporhonor EE, Egwaikhide PA, Eguavoen IO. Effect of Sprouting on invitro digestibility of some locally consumed leguminous seeds. J Appl Sci Environ Manag. 2006;10(3):55-8.

Fasoyiro SB, Ajibade SR, Saka JO, Ashaye OA, Obatolu VA, Farinde EO et al. Physical characteristics and effect of processing methods on pigeon pea varieties (Cajanus cajan L.). J Food Agric Environ. 2010a;3:59-61.

Amarteifio JO, Munthali DC, Karikari SK, Morake TK. The composition of pigeon pea (Cajanus cajan) grow in Botswan. Plant Foods Hum Nutr. 2002;57(2):173-7.

Saxena KB, Kumar RV, Sultana R. Quality nutrition through pigeon pea- a review. Health. 2010;02(11):1335-44.

Odeny DA. The potential of pigeon pea [Cajanus cajan (L.) Millsp.] in Africa. Nat Resour Forum. 2007;N31:297-305.

Onimawo IA, Akubor PI. Food Chemistry (Itegrated Approach with Biochemical Background).2nd edn. Joytal Printing Press, Agbowo, Ibadan, Nigeria. 2012; 2012:165-267.

Subramanian T. Development of high fiber and high protein biscuits by substituting wheat flour with wheat bran and pigeon pea brokens flour [dissertation]. Jiwaji University; 2009.

Akindahunsi AA. Change in the ascorbic acid, total phenol and antioxidant activity of some sun-dried green leafy vegetables in Nigeria. Nutr Health. 2004;18:29-36.

Fasoyiro SB, Akande SR, Arowora KA, Sodeko OO, Sulaiman PO, Olapade CO et al. Physicochemical and sensory properties of pigeon pea (Cajanus cajan L.) flours. Afr J Food Sci. 2010;4:120-6.

Adebowale O, Maliki K. Effect of fermentation period on the chemical composition and functional properties of pigeon pea (Cajanus cajan) seed flour. International Food Research Journal. 2011;18(4):1329-1333.

AOAC. Official methods of analysis of AOAC International, 19th Ed., Gaithersburg, M.D USA; 2012.

Brunner D, Dücker K, Oellers N, Hafen E, Scholz H, Klämbt C. The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature. 1994;370(6488):386-9.

Inuwa HM, Aina VO, Aimola BGI, Amao T. Comparative Determination of Antinutrient factors in Groundnut Oil, Palm Oil. Adv J Food Sci Technol. 2011;3(4):275-9.

Rattanathanalerk M, Chiewchan N, Srichumpoung W. Effect of thermal processing on the quality loss of pineapple juice. J Food Eng. 2005;66(2):259-65.

Adepeju AB, Abiodun OA, Otutu OL, Pele LG. Development and quality evaluation of wheat/breadfruit cookies. Int J Tech Res Appl. 2015;3(6):7-11.

Ahaotu I, Eze O, Maduka N. Quality assessment of cornbreadfruit-date flour and sensory evaluation of chin-chin prepared using the composite flour. Adv Biotechnol Microbiol. 2021;16(3):36-53.

Arukwe DC. Proximate composition, functional and pasting properties of wheat flour supplemented with combined processed pigeon pea flour. Int J Food Sci Nutr. 2021;6(4):59-64.

Igbabul BD, Idikwu HO, Inyang CU. Effect of fermentation on some functional properties of Mucuna sloanei and Detarium microcarpum. J Food Technol. 2012;10(3):83-6.

Torres A, Frias J, Granito M, Vidal-Valverde C. Germinated Cajanus cajan seeds as ingredients in pasta products: chemical, biological and sensory evaluation. Food Chem. 2007;101(1):202-11.

Nkhata SG, Ayua E, Kamau EH, Shingiro JB. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr. 2018;6(8):2446-58.

Anaemene D, Fadupin G. Anti-nutrient reduction and nutrient retention capacity of fermentation, germination and combined germination-fermentation in legume processing. Appl Food Res. 2022;2(1):100059.

Onweluzo JC, Nwabugwu CC. Fermentation of millet (Pennisetum americanum) and pigeon pea (Cajanus cajan) seeds for flour production: effects on composition and selected functional properties. Pak J Nutr. 2009;8(6):737-44.

Pranoto Y, Anggrahini S, Efendi Z. Effect of natural and Lactobacillus plantarum fermentation on in-vitro protein and starch digestibilities of sorghum flour. Food Biosci. 2013;2:46-52.

Oshodi AA, Ogungbenle HN, Oladimeji MO. Chemical composition, nutritionally valuable minerals and functional properties of Benniseed, pearl millet and quinoa fkours. Int J Food Sci Nutr. 1999;50(5):325-31.

Uwaegbute AC, Iroegbu CU, Eke O. Chemical and Sensory evaluation of germinated cowpea (Vigna unguiculata) and their products. Food Chem. 2000;68(2):141-6.

Igbabul BD, Hiikyaa O, Amove J. Effect of fermentation on the proximate composition and functional properties of mahogany bean (Afzelia africana) flour. Curr Res Nutr Food Sci J. 2014;2(1):1-7.

Ilelaboye N, Jesusina T. Physicochemical evaluation and pasting properties of flours, biscuit and chinchin prepared from Okara fortified plantain–sorghum blends. FEPI-JOPAS. 2021;3(2):1-13.

Mbaeyi Nwaoha IE, Obetta FC. Production and evaluation of nutrient-dense complementary food from millet (Pennisetum glaucum), pigeon pea (Cajanus cajan) and seedless breadfruit (Artocarpus altillis) leaf powder blends. Afr J Food Sci. 2016;10(9):143-56.

Olasupo NA, Okorie CP, Oguntoyinbo FA. The biotechnology of ugba, a Nigerian traditional fermented food condiment. Front Microbiol. 2016;7:1153.

Balogun MA, Oyeyinka SA, Kolawole FL, Joseph JK, Olajobi GE. Chemical composition and sensory properties of soy-tiger nut cheese. Ceylon J Sci. 2019; 48(4):353-8.

Chinma CE, Adewuyi O, Abu JO. Effect of germination on the chemical, functional and pasting properties of flours from brown and yellow varieties of tigernut (Cyperus esculentus). Food Res Int. 2009;42(8):1004-9.

Bolaji OT, Kamoru MA, Adeyeye SAO. Quality evaluation and physico -chemical properties of blends of fermented cassava flour (lafun) and pigeon pea flour. Sci Afr. 2021;12:1-9.

Onyango SO, Abong GO, Okoth MW, Kilalo D, Mwang’ombe AW. Physico-chemical properties and sensory quality of cassava-cowpea-millet composite flours. Afr Crop Sci J. 2020; 28(s1):27-39.

Liang J, Han BZ, Nout MM, Hamer RJ. Effects of soaking, germination and fermentation on phytic acid, metal and in vitro soluble zinc in brown rice. Food Chem. 2008;110(4):821-8.

Nwanekezi EC, Ehirim FN, Arukwe DC. Combined effects of different processing methods on vitamins and antinutrients contents of pigeon pea (Cajanus cajan) flour. J Environ Sci Toxicol Food Technol. 2017;11(4):73-81.

Nnam NM, Obiakor AA. Evaluation of the effect of sprouting on the viscosity, proximate composition and mineral content of Hungry rice (Digitaria exilis) flours. Niger Food J. 2013;18:57-62.

Enujiugha VN, Badejo AA, Iyiola SO, Oluwamukomi MO. Effect of Germination on the Nutritional and Functional properties of African oil bean (Pentaclethra macrophylla Berth) seed Flour. Food Agric Environ. 2003;1(3 and 4):72-5.

Falmata SF, Sanda KS, Goni C, Babagana M. Rheological and microbiological assessment of complementary meal produced from sprouted and fermented sorghum blended with cowpea and groundnut. Merit Res J Food Sci Technol. 2014;2(3):31-7.

Sade FO. Proximate, antinutritional factors and functional properties of processed pearl millet (Pennisetum glaucum). J Food Technol. 2009;7(3):92-7.

Abd El-Hack ME, Swelum AA, Abdel-Latif MA, Más Toro DM, Arif M. Pigeon Pea (Cajanus cajan) as an alternative protein source in broiler feed. Worlds Poult Sci J. 2018;74(3):541-8.

Abbas Y, Ahmad A. Impact of processing on nutritional and anti-nutritional factors of legumes: a review. Ann Food Sci Technol. 2018;19(2):199-215.

Alonso LE. The ALL protocol: A standard protocol for the collection of ground-dwelling ants. In: Agosti D, Majer JD, Alonso LE, Schultz T. (Eds.), Ants: Standard Methods for Measuring and Monitoring Biodiversity, Smithsonian Institution Press, Washington DC. 2000;204-206.

Udensi EAU, Ekwu FCE, Isinguzo JNI. Antinutrient factors of vegetable cowpea (Sesquipedalis) seeds during thermal processing. Pak J Nutr. 2007;6(2):194-7.

Uzoechina OB. Evaluation of the effect of processing techniques on the nutrient and antinutrient contents of Pigeon Pea (Cajanus cajan) seed flours. J Food Sci. 2007;28:76-7.

Redden RJ, Chen W, Sharma B. Chickpea breeding and management. United Kingdom: CABI Publishing; 2005.

Osagie AU. Antinutritional factors. In: Osagie AU, OU E, editors. nutritional quality of plant foods. Benin City: Post Harvest Research Unit, University Benin; 1998.

Ene-Obong HN. Content of antinutrients and in vitro protein digestibility of the African yambean, pigeon and cowpea. Plant Foods Hum Nutr. 1995;48(3):225-33.

Onwurafor EU, Onweluzo JC, Ezeoke AM. Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour. Niger Food J. 2014;32(1):89-96

Ojha P, Adhikari R, Karki R, Mishra A, Subedi U, Karki TB. Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Sci Nutr. 2018;6(1):47-53.

Adebo OA, Njobeh PB, Mulaba-Bafubiandi AF, Adebiyi JA, Desobgo ZSC, Kayitesi E. Optimization of fermentation conditions for ting production using response surface methodology. J Food Process Preserv. 2018;42(1):e13381.

Espinosa-Páez E, Alanis-Guzmán MG, Hernández-Luna CE, Báez-González JG, Amaya-Guerra CA, Andrés-Grau AM. Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avena sativa by fermentation with the Pleurotus ostreatus fungus. Molecules. 2017;22(12):2275..

Omojokun AO, Jokoh AO. Effects of fermentation and extrusion on the mineral and antinutrient composition of plantaincowpea flour blends. Asian J Emerg Resour. 2020;2:190-9.

Kumar V, Sinha AK, Makkar HPS, Becker K. Dietary roles of phytate and phytase in human nutrition: a review. Food Chem. 2010;120(4):945-59{959. doi: 10.1016/j.foodchem.2009.11.052.

Loumouamou B, Silou TH, Desobry S. Characterization of seeds and oil of sesame (Sesamum indicum L.) and the kinetics of degradation of the oil during heating. Res J Appl Sci Eng Technol. 2010;2(3):227-32.

Oatway L, Vasanthan T, Helm JH. Phytic acid. Food Reviews International. 2001;17 (4):419-431. DOI:10.1081/FRI-100108531. eprint: http://dx.doi.org/10.1081/FRI-100108531.

Khetarpaul N, Chauhan BM. Fermentation of pearl millet flour with yeasts and lactobacilli: in vitro digestibility and utilization of fermented flour for weaning mixtures. Plant Foods Hum Nutr. 1990;40(3):167-73.

Mulimani VH, Kadi NS, Thippeswamy S. Effect of processing on phytic acid content in different red gram (Cajanus cajan L.) varieties. J Food Sci Technol. 2003;10:371-3.

Fardiaz D, Markakis P. Degradation of phytic acid in oncom (fermented peanut press cake). J Food Sci. 1981;46(2):523-5.

Mosha TC, Gaga HE. Nutritive value and effect of blanching on the trypsin and chymotrypsin inhibitor activities of selected leafy vegetables. Plant Foods Hum Nutr. 1999;54(3):271-83.

Edema MO, Sanni LO, Abiodun IS. Evaluation of maize-soybean flour blends for sour maize bread production in Nigeria. Afr J Biotechnol. 2005;4:911-8.

Eke-Ejiofor J, Kporna JD. Nutrient and sensory evaluation of cowpea-Acha flour blends in pudding production. Food Science and Nutrition Technology, 4(1); 2019. p. 1-11.

Akajiaku LO, Nwosu JN, Odimegwu EN, Alagboso SO, Uzoechi JC. Influence of sprouted pigean pea (Cajan cajan) flour inclusion on sensory quality of moi-moi. The Int J Technoledge. 2014;2(12):122-9.

Shakpo IO, Osundahunsi OF. Effect of cowpea enrichment on the phyco-chemical, mineral and microbiological properties of maize: cowpea flour blends. Res J Food Sci Nutr. 2016;1(2):35-41.

Adamczyk B, Simon J, Kitunen V, Adamczyk S, Smolander A. Tannins and their complex interactions with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. ChemistryOpen. 2017;6(5):610-4.

Olatunde SJ, Ajayi OM, Ogunlakin GO, Ajala AS. Nutritional and sensory properties of cake made from blends of pigeon pea, sweet potato and wheat flours. Food Res. 2019;3(5):456-62.

Ogundele GF, Ojubanire BA, Bamidele OP. Proximate composition and organoleptic evaluation of cowpea (Vignaugu culata) and soybean (Glycine Max) Blends for the Production of moi-moi and Ekuru (Steamed Cowpea Paste). Journal of Experimental Biology and Agricultural Sciences. 2015;3(2):207-212.

Mittal R, Nagi HPS, Sharma P, Sharma S. Effect of processing on chemical composition and antinutritional factors in chickpea flour. J Food Sci Eng. 2012;2(3):180-9.

Ouazib M, Nadia M, Oomah BD, Zaidia FARID, Wanasundarae JPD. Effect of heat processing and germination on nutritional parameters and functional properties of chickpea (Cicer arietinum L.) from Algeria. Food Legumes. 2015;28:1-8.

Ehimen RO, Abiodun AA, Michael AL, Olajide PS, Adeniyi AT, Raphael OL et al. Nutrient composition functional and pasting properties of unripe cooking banana, pigeon pea and sweet potato flour blends. J Food Sci Nutr. 2017;5(3):750-62.

Akusu MO, Kiin-Kabari DB. Protein quality and sensory evaluation of moi-moi prepared from cowpea/maize flour blends. Afr J Food Sci. 2012;6(3):47-51.

Enwere NJ. Effect of tempering and drying on the functional properties and performance of cowpea flour during Akara and moi-moi preparations [M.Sc. thesis]. Nsukka: Department of Food Science and Technology. University of Nigeria; 2016.

Olu M, Rotimi A, Emmanuel AA. Development of spiced instant moi-moi produced from precooked cowpea using maize starch as binder. Int J Food Sci Nutr Eng. 2017;7(4):75-90.

Hossain MA, Becker K. Nutritive value and antinutritional factors in different varieties of Sesbania seeds and their morphological fractions. Food Chem. 2001;73(4):421-31.

Osagie A, Eka, F. Some anti-nutritional constituents in some food items grown in Nigeria. Trop Sci. 1998;36:109-15.

Awika JM, Duodu KG. Bioactive polyphenols and peptides in cowpea (Vigna unguiculata) and their health promoting properties: a review. J Funct Foods. 2016;2:465-78.

Siddhuraju P, Becker K. Effect of various domestic processing methods on antinutrients and in vitro protein and starch digestibility of two indigenous varieties of Indian tribal pulse, Mucuna pruriens var. utilis. J Agric Food Chem. 2001; 49(6):3058-67.

Yadav BS, Yadav RB, Kumar M. Suitability of pigeon pea and rice starches and their blends for noodle making. LWT Food Sci Technol. 2011;44(6):1415-21.

Yoon JH, Thompson LU, Jenkins DJ. The e_ect of phytic acid on in vitro rate of starch digestibility and blood glu- cose response. Am J Clin Nutr. 1983;38(6):835-42.

Marie Minihane AM, Rimbach G. Iron absorption and the iron binding and antioxidant properties of phytic acid. Int J Food Sci Technol. 2002;37(7):741-8.

Kumar V, Sinha AK, Makkar HPS, Becker K. Dietary roles of phytate and phytase in human nutrition: a review. Food Chem. 2010;120(4):945-59.

Mahesh S, Pavithra GJ, Parvathi MS, Rajashekara R, Shankar AG. Effect of processing on phytic acidity and nutrient availability in food grains. Int J Agric Sci. 2015;5(5):771-7.

Purwandari FA, Annisa EDN, Rachmawati AT, Puspitasari D, Wikandari R, Seyaningsih W et al. Effect of different cooking methods on chemical composition, nutritional values, and sensory properties of jack bean (Canavalia ensiformis) tempe. Food Res. 2021;5(3):327-33.

López-Martínez LX, Leyva-López N, Gutiérrez-Grijalva EP, Heredia JB. Effect of cooking and germination on bioactive compounds in pulses and their health benefits. J Funct Foods. 2017; 38:624-34.

Tan-Wilson AL, Chen JC, Duggan MC, Chapman C, Obach RS, Wilson KA. Soybean bowman-birk trypsin inhibitors – classification and report of a glycine-rich trypsin-inhibitor class. J Agric Food Chem. 1987;35(6):974-81.

Kaur S, Sharma S, Dar BN, Singh B. Optimization of process for reduction of antinutritional factors in edible cereal brans. Food Sci Technol Int. 2012;18(5): 445-54.

Carlini CR, Udedibie AB. Comparative effects of processing methods on hemagglutinating and antitryptic activities of Canavalia ensiformis and Canavalia braziliensis seeds. J Agric Food Chem. 1997;45(11):4372-7.

Barakat H, Reim V, Rohn S. Stability of saponins from chickpea, soy and faba beans in vegetarian, broccoli-based bars subjected to different cooking techniques. Food Res Int. 2015;76:142-9.

Chan KW, Iqbal S, Khong NMH, Ooi DJ, Ismail M. Antioxidant activity of phenolics–saponins rich fraction prepared from defatted kenaf seed meal. LWT Food Sci Technol. 2014;56(1):181-6.

Güçlü-Ustündağ O, Mazza GGüçlü-Üstündag˘, Ö and Mazza. Saponins: properties, applications and processing. Crit Rev Food Sci Nutr. 2007;47(3):231-58.

Volf I, Ignat I, Neamtu M, Popa VI. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem Pap. 2014;68(1):121-9.

Xu B, Chang SK. Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. J Agric Food Chem. 2009;57(22):10718-31.